2004 IEEE Radar Conference

Innovative Radar Technologies - Expanding System Capabilities

 
 
 April 26-29, 2004 Wyndham Philadelphia at Franklin Plaza Philadelphia, Pennsylvania
 
 
HomeConf InfoProgramPapersTutorialsExhibitsSponsorsAuthorsNewsParticipant Login
 
   
 

Session 6B.4
SAR image formation algorithm with multipath reflectivity estimation

David A. Garren - SAIC, J. Scott Goldstein - SAIC, Danielle R. Obuchon - SAIC, Robert R. Greene - SAIC, Jan A. North - Lt. Col., USAF; SAF/ST

Wed, 28 April 2004, 10:20 AM - 12:00 PM


Abstract

Recent analysis has resulted in an innovative technique for forming synthetic aperture radar (SAR) images without the multipath ghost artifacts that arise in traditional methods. This technique separates direct-scatter echoes in an image from echoes that are the result of multipath, and then maps each set of reflections to a metrically correct image space. Current processing schemes place the multipath echoes at incorrect (i.e., ghost) locations due to fundamental assumptions implicit in conventional array processing. Two desired results are achieved by use of this new Image Reconstruction Algorithm for Multipath Scattering (IRAMS). First, the intensities of the ghost returns are reduced in the primary image space, thereby improving the relationship between the image pattern and the physical distribution of the scatterers. Second, a higher dimensional image space that enhances the intensities of the multipath echoes is created which possesses characteristic information about the scene being imaged. These auxiliary "delay" image planes offer the potential of dramatically improving target detection and identification capabilities. This paper develops a robust IRAMS implementation that is based upon the cross-range drift in conventional SAR imagery of the multipath scattering events with respect to changes in the relative aspect angle. The resulting analysis is validated via simulated frequency response data that includes the effects of multipath scattering.

 
To Top


© Copyright 2004, Institute of Electrical and Electronics Engineers, Inc.